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Reconstructing Heterogeneous Networks via
Compressive Sensing and Clustering

Yichi Zhang, Chunhua Yang, Keke Huang , Member, IEEE, Marko Jusup , Zhen Wang ,
and Xuelong Li , Fellow, IEEE

Abstract—Reconstructing complex networks from observed
data is a fundamental problem in network science. Compressive
sensing, widely used for recovery of sparse signals, has also been
used for network reconstruction under the assumption that net-
works are sparse. However, heterogeneous networks are not ex-
actly sparse. Moreover, when using compressive sensing to recover
signals, the projection matrix is usually a random matrix that
satisfies the restricted isometry property (RIP) condition. This
condition is much harder to satisfy during network reconstruc-
tion because the projection matrix depends on time-series data of
network dynamics. To overcome these shortcomings, we devised
a novel approach by adapting the alternating direction method
of multipliers to find a candidate adjacency matrix. Then we
used clustering to identify high-degree nodes. Finally, we replaced
the elements of the candidate adjacency vectors of high-degree
nodes, which are likely to be incorrect, with the corresponding
elements of small-degree nodes, which are likely to be correct.
The proposed method thus overcomes the shortcomings of com-
pressive sensing and is suitable for reconstructing heterogeneous
networks. Experiments with both artificial scale-free and empir-
ical networks showed that the proposed method is accurate and
robust.

Index Terms—Complex networks, network reconstruction, node
degree, hub nodes, sparsity.

I. INTRODUCTION

COMPLEX networks are ubiquitous in the real world and,
among others, encompass the World Wide Web [1], social

relationships [2], [3], and biological networks [4]. In recent
years, researchers have focused on the geometric features [4],
control [5], and synchronization [6] of complex networks based
on fixed or time-varying network structures [7]. In particular,
accurate structural information about a complex network is both
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necessary and sufficient for a comprehensive understanding of
network behavior and dynamics [8], [9]. Owing to experimental
cost and measurement technology restrictions, it is hard to obtain
structural information directly. Thus, a general method that can
be used to mine network structural information from limited
measurement data is important.

Recently, network structure reconstruction, the inverse of the
network analysis problem, has attracted a great deal of attention
across multiple disciplines. Not to be confused with network
recovery [10], which deals with network functionality depending
on the functional status of its nodes, network reconstruction
treats the network as a black box and uses observational data to
infer the true network structure. Among the many reconstruction
methods, data-driven methods that infer a network’s connectiv-
ity from limited observable data are increasing in popularity.
For example, Huang et al. [11] studied how incorporating latent
constraints enhances the performance of network reconstruction,
Ma et al. [12] demonstrated the synergy of two different methods
in reconstructing the structure of heterogeneous networks, Liu
et al. [13] exploited the power-law property to propose a recon-
struction method for scale-free networks, and Mei et al. [14]
devised a solution to the network-reconstruction problem for
two-layer networks using the Alternating Direction Method of
Multipliers (hereafter ADMM).

Data-driven network structure reconstruction is challenging
for the following reasons. First, because the structural informa-
tion of a network is mostly implicit, which is sometimes referred
to as gray information [15], the structure cannot be directly
observed in measurable data. In gene regulatory networks, for in-
stance, relationships between genes are accessible only by means
of specialized instrumentation and laborious experimentation
that paint only a partial picture. Second, as the number of nodes
in a complex network increases, the number of dimensions of
its possible structural configuration grows exponentially. Using
again gene regulatory networks as an example, if the expected
number of regulatory interactions is in the order of 105, which
implies 210

5 ≈ 9 · 1030102 structural configurations even if the
network is assumed to be unweighted. Third, because collecting
data from a complex network is expensive and the data collected
is extremely scarce, network structure reconstruction is, in gen-
eral, an ill-posed problem, i.e., we need to solve a mathematically
underdetermined system of equations. Even our best data on
gene regulatory networks usually cover just a small percentage
of the expected number of regulatory interactions.
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Compressive sensing, which was originally used in the
fields of numerical computing, signal processing, and computer
vision [16]–[18], is a novel approach that is increasingly being
applied in the domain of network reconstruction [19]. Specif-
ically, according to compressive sensing theory, the task of
sparse signal recovery is to transform a linear system into
an optimization problem that can be solved by some greedy
or convex optimization method. To guarantee effective signal
recovery, a random matrix is often selected as the projection
matrix because such a matrix can satisfy the Restricted Isometry
Property (RIP) condition with high probability [20], [21]. In the
context of the network reconstruction problem, a compressive
sensing-based method decomposes the process of reconstructing
the entire network into many local signal recovery problems,
and the network structure, namely, the adjacency matrix, is
reconstructed column by column. Wang et al. [22] and Han
et al. [19] respectively used the basic pursuit method and the
LASSO method to solve the compressive sensing problem for
complex networks reconstruction. Chen et al. [23] demonstrated
the effectiveness of compressive sensing in reconstructing wire-
less sensor networks, whereas Pan et al. [24] applied the ap-
proach to the reconstruction of biochemical reaction networks.
The results of these previous works reveal that recovered net-
work adjacency vectors are sparse, which suits compressive
sensing-based methods. However, a critical difference from the
sparse signal recovery task using compressive sensing theory
is that the projection matrix in the network structure recon-
struction task is defined by network dynamics that often fails
to satisfy the RIP condition, especially when the network is
heterogeneous.

In a heterogeneous network, there are always hub nodes,
which act as bottlenecks in the network structure reconstruc-
tion task. The term “heterogeneity” here refers to node-degree
distributions, such as power laws, for which a possible number
of per-node connections spans several orders of magnitude.
Because the adjacency vectors of the hub nodes may not be
sparse, a larger scale projection matrix and more observed data
are needed for precise reconstruction of those vectors. Owing
to experimental cost or measurement technology restrictions, it
is almost impossible to collect such huge amounts of data in
actual situations, which means that it is not possible to obtain
accurate local structure around hub nodes. This problem is an
inevitable flaw of compressive sensing theory when applied
directly to network reconstruction, yet the problem has been
ignored by previous studies. Fortunately, in heterogeneous net-
works, hub nodes are often linked to small-degree nodes, and the
adjacency vectors of the small-degree nodes are often sparse. A
straightforward question arises: Can we use such latent structural
information to get around the described flaw in the application
of compressive sensing theory?

Because many complex networks are heterogeneous and there
is a great need to determine the topology of such networks,
we propose a compressive sensing-based methodology for undi-
rected and unweighted network reconstruction that aims to sig-
nificantly improve performance in the reconstruction of hetero-
geneous networks. Specifically, we supplemented compressive
sensing with a clustering-based approach (CBA) to mine the

structural information from time-series data and thus improve
the reconstruction accuracy. We applied this methodology to
artificial scale-free networks [25]–[27] with two different scales,
as well as to two real networks, known as the Karate net-
work [28], football network [29] and the Adjnoun network [30].
The results show a large improvement in network reconstruction
performance compared with the original compressive sensing
theory-based method. In summary, there are three main contribu-
tions of the method proposed herein. First, we demonstrate how
to turn a traditional decomposed network reconstruction process
into an integrated global optimization problem that improves the
accuracy of the results. Second, using the linear program (i.e.,
box-constraint) relaxation, we transform a Boolean linear pro-
gramming formulation of the problem, which is most accurate
for mining unweighted networks, into a convex optimization
problem that is faster to calculate, and then design an efficient
ADMM solver to perform the actual calculations. Third, to
exploit the latent structural information of undirected networks
and thus account for the shortcomings of compressive sensing
in relation to non-sparse hub nodes, we employ a clustering
method to separate hub nodes from normal nodes, followed by
reusing the reconstruction results for normal nodes to improve
the reconstruction results for hub nodes.

The rest of the paper is organized as follows. In Section II, we
formulate the problem of network reconstruction according to
evolutionary game data, and then incorporate the reconstruction
problem into the compressive sensing framework. In Section III,
we propose our CBA method. In Section IV, we conduct a
series of numerical experiments with several artificial and real
networks to demonstrate that our method can effectively improve
network structure reconstruction results. Finally, Section V com-
prises a discussion and concluding remarks.

II. PROBLEM FORMULATION

Here, we introduce the game dynamics in complex networks,
and then review the compressive sensing-based method for using
time-series data to solve the network reconstruction problem.

A. Game Dynamics in Networks

In a typical game, agents occupy different nodes of a network
with a known structure, and they usually adopt different strate-
gies, from a given set of strategies, to achieve a maximum payoff
under a certain mode of interaction. The three fundamental ele-
ments of the evolutionary game dynamics in networked systems
are (i) the network structure, (ii) the strategy set and strategy
selection model, and (iii) the game model.

The Prisoner’s Dilemma Game (PDG) is commonly used
to model cooperation among selfish agents in a multi-agent
system [19], [22], [31]. There are many interesting recent results
about the effects of the network structure of complex networks
on the PDG cooperation ratio [32]–[36]. In the networked PDG,
each node is occupied by one agent, and each agent participates
in games with their neighbors, determined by the network struc-
ture, in a pair-wise fashion. The strategies of the PDG are defined
as follows:
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1) If both agents of the game choose cooperation, recorded as
(C,C), each one gets the “reward for mutual cooperation,”
R.

2) If one agent chooses cooperation and the other chooses
defection, recorded as (C, D) or (D, C), the defector gets
T , the “temptation to defect,” and the cooperator gets S,
the “sucker’s payoff”.

3) If both agents choose to defect, recorded as (D, D), then
each of them gets P , “punishment for mutual defection”.

Accordingly, the payoff matrix becomes

PG =

(
R S
T P

)
. (1)

We use the well-known weak PDG as the game model [37],
for which the payoff matrix is

PPDG =

(
1 0
b 0

)
, (2)

where 1 < b < 2 quantifies the temptation to defect. Mathe-
matically, cooperation (C) can be defined with strategy vector
s(C) = (1, 0)T . Similarly for defection, s(D) = (0, 1)T . The
payoff of agent i gained by playing with agent j can be calculated
as sTi (t)PPDGsj(t). In each round, agent i plays the game with
their immediately adjacent neighbors, and thus earns payoff

ui(t) =
∑
j∈Ni

sTi (t)PPDGsj(t), (3)

where Ni is the set comprising the neighbors of agent i. After
each game round, the agents update their strategies with ref-
erence to their neighbors’ strategies. We use the proportional
imitation rule as the strategy selection model. According to this
rule, agent i randomly picks one of their neighbors j. If ui > uj ,
agent imaintains the same strategy in the next round of the game
as in the current round. Otherwise, agent i adopts j’s strategy
with probability [38]

P (si(t+ 1)← sj(t)) =
uj − ui

bmax{ki, kj} (4)

where ki and kj are the node degrees of agents i and j, re-
spectively. If the payoffs and strategies of all of the agents
are recorded, the resulting time-series data can be used for the
network reconstruction task.

B. Compressive Sensing for Network Reconstruction Using
Evolutionary Game Data

The key to reconstructing a network on the basis of compres-
sive sensing is the relationship between strategies and payoffs.
Suppose that we can represent the relationships of each node
in a certain network by adjacency matrix A with dimensions
N ×N , whereN is the number of nodes in the network. If agents
i and j can interact with each other, then they are connected
in the network and element aij in matrix A is equal to 1;
otherwise, aij = 0. In general, if we do not know the interaction
relationship between all agent pairs, the relationship between
the strategies and payoffs of agent i in the tth round can be

expressed by

ui(t) =
∑
Ni

aijFij(t), (5)

where Fij(t) = sTi (t)PPDGsj(t) represents the potential pay-
off, which is decided by the strategies of the two sides during
one round of the game. If agent i has a connection to agent j,
the potential payoff will be i’s actual payoff.

Accordingly, we can stack the equations for each time instance
into a combined equation based on the time-series data of
strategies Si = [si(t1), si(t2), . . ., si(tM )]T and payoffs Ui =
[ui(t1), ui(t2), . . . , ui(tM )]T of agent i from t = 1 to t = M ,
i.e.,⎡

⎢⎣
ui(t1)

...
ui(tM )

⎤
⎥⎦ =

⎡
⎢⎣

Fi1(t1) · · · FiN (t1)
...

. . .
...

Fi1(tM ) · · · FiN (tM )

⎤
⎥⎦×

⎡
⎢⎣
ai1

...
aiN

⎤
⎥⎦ . (6)

For notational consistency, we rewrite (6) as

Yi = ΦiXi, (7)

where

Yi = [ui(t1), . . . , ui(tM )]T (8)

Φi =

⎡
⎢⎣

Fi1(t1) · · · FiN (t1)
...

. . .
...

Fi1(tM ) · · · FiN (tM )

⎤
⎥⎦ (9)

Xi = [ai1, . . . , aiN ]T . (10)

It is clear from (7)–(10) that Φi and Yi can be acquired from
the time-series data of strategies and payoffs, and the only
unknown is the interaction relationship, expressed as Xi in (7).
Because most of the complex network is sparse, we can make
full use of this structural information and incorporate it into the
compressive sensing framework according to

min ‖Xi‖1
s.t. Yi = ΦiXi. (11)

The adjacency vectors of the remaining agents in the network
can be calculated similarly. After the adjacency vectors of
all of the agents have been obtained, adjacency matrix A =
[X1, X2, . . . , XN ]T can be acquired by stacking all of the adja-
cency vectors together.

III. CLUSTERING-BASED APPROACH (CBA)

In compressive sensing-based network reconstruction, an ex-
isting link can be distinguished from a nonexistent link by setting
a single threshold value for the elements of reconstructed adja-
cency vectors [19], [39], giving good results when the dynamics
and topology of each node are of the same type. However, many
real-world networks follow a power-law degree distribution,
reflecting large heterogeneity in node connectivity [40]–[42].
The application of compressive sensing theory directly to the
reconstruction of this kind of networks cannot achieve good
results. Thus, the method needs to be improved to generate
more accurate reconstruction. To this end, we first introduce
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new constraints to enhance the reconstruction of binary elements
in the adjacency matrix, and then we design a solution for the
optimization problem through the ADMM framework. Second,
we analyze the shortcomings of the compressive sensing method
and propose a method by which to overcome them.

In an unweighted network, aij = 1 when there is a
link between i and j; otherwise, aij = 0. Recalling that
Xi = {ai1, ai2, . . . , aiN}T , it is necessary to add a binary con-
straint, Xi ∈ {0, 1}N , i = 1, . . . , n, thus turning this problem
into an instance of Boolean linear programming (BLP)

min ‖Xi‖1

s.t.

{
Yi = ΦiXi

Xi ∈ {0, 1}N .
(12)

Because (12) is a combinatorial optimization problem, it is in
general difficult to solve. Thus, to simplify the calculation, the
problem is reformulated using Lagrangian relaxation

min ‖Xi‖1

s.t.

{
Yi = ΦiXi

aij(1− aij) = 0, j = 1, . . . , N
(13)

or, alternatively, linear program (LP) relaxation [43]

min ‖Xi‖1

s.t.

{
Yi = ΦiXi

Xi ∈ [0, 1]N .
(14)

The difference between (12) and (13) is the way of solving the
problem. The main method for (12) is usually exhaustion, but
for (13), a dual problem formulation is used to find the lower
BLP bound. The way of finding this lower bound is called the
Lagrangian relaxation [44]. As for Eq. (14), it just changes the
constraints X ∈ {0, 1}N to the linear inequalities X ∈ [0, 1]N ,
thus making the constraints continuous [45]. The way of re-
placing original Boolean constraints with linear inequalities is
usually treated as an LP relaxation of the BLP [43]. These forms
of the optimization problem are far easier to solve and give
a lower bound on the optimal value of the BLP. Moreover, it
can be proven that the lower bound obtained via Lagrangian
relaxation and that obtained via LP relaxation are the same [43].
We opted for the LP relaxation and integrated it into the ADMM
framework.

In general, the adjacency matrix reconstruction problem is
decomposed into tasks of inferring local structures centered
around each node, which is the local method for network recon-
struction, but this inference process is time-consuming [11]. To
improve efficiency, we can stack all of the tasks together. First,
we vectorize the adjacency matrix to a single vector, represented
by X = vec(A) = [XT

1 , X
T
2 , . . ., X

T
N ]T , where Xi is the ith

row of the adjacency matrix. At the same time, payoffs Yi can
be rewritten as Y = [Y T

1 , Y T
2 , . . . , Y T

N ]T , while the potential
payoff matrix can be rewritten as Φ = diag{Φ1, . . .,ΦN} ∈
RMN×N2

. Thus, (7) is transformed into a global format for
network reconstruction

Y = ΦX, (15)

which allows the global network structure to be reconstructed in
one calculation process. The optimization problem in (12) then
becomes

min ‖X‖1

s.t.

{
Y = ΦX

X ∈ [0, 1]N
2

.
(16)

Traditional compressive sensing usually reconstructs the adja-
cency matrix column by column. Here, the matrix reconstruction
problem is transformed into a vector reconstruction problem
which needs to be run only once. Thanks to the decentralized
nature of the ADMM algorithm, the reconstruction process can
be deployed to a computer cluster to enhance parallel computing
performance [46]. Therefore, the proposed network reconstruc-
tion algorithm is faster and more efficient.

Next, we transform (16) into an ADMM algorithm.

min f(X) + g(z1) + ‖z2‖1

s.t.

{
X − z1 = 0
X − z2 = 0,

(17)

where f is the indicator function of {x ∈ Rn|ΦX = Y }, and
g is the indicator function of {z1 ∈ [0, 1]N

2}. The augmented
Lagrangian is formed by applying the method of multipliers

Lρ(X, z1, z2, λ1, λ2) = f(X) + g(z1) + ‖z2‖1 + λT
1 (X − z1)

+ λT
2 (X − z2) +

ρ

2
‖X − z1‖22

+
ρ

2
‖X − z2‖22 (18)

where λ ∈ Rp is the multiplier and ρ > 0 a penalty parameter.
Then ADMM consists of the following iterations

Xk+1 = argminLp(X, zk1 , z
k
2 , λ

k
1 , λ

k
2)

zk+1
1 = argminLp(X

k+1, z1, z
k
2 , λ

k
1 , λ

k
2)

zk+1
2 = argminLp(X

k+1, zk+1
1 , z2, λ

k
1 , λ

k
2)

λk+1
1 = λk

1 + ρ(X − zk+1
1 )

λk+1
2 = λk+1

2 + ρ(X − zk+1
2 ) (19)

For simplicity, the ADMM iterations can be rewritten in a
slightly different, scaled form by combining linear and quadratic
terms in the augmented Lagrangian and scaling the dual variable.
If we take z1 as an example, suppose the residual r1 = x− z1,
then

λT
1 r1 +

ρ

2
‖r1‖22 =

ρ

2
‖r1 + u1‖22 −

ρ

2
‖u1‖22 (20)

where u1 = 1
ρλ1 is the scaled dual variable. ADMM iteration

(19) is thus expressed in the scaled form as:

Xk+1 = argmin
x

(
f(X)

+
ρ

2

(
1

2

∥∥X − zk1 + uk
1

∥∥2
2
+

1

2

∥∥X − zk2 + uk
2

∥∥2
2

))

zk+1
1 = argmin

(
g(z1) +

ρ

2

∥∥Xk+1 − z1 + uk
1

∥∥2
2

)
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zk+1
2 = argmin

(
‖z2‖1 +

ρ

2

∥∥Xk+1 − z2 + uk
2

∥∥2
2

)

uk+1
1 = uk

1 +Xk+1 − zk+1
1

uk+1
2 = uk

2 +Xk+1 − zk+1
2 (21)

The residuals in the kth iteration are defined as rk1 = Xk + zk1
and rk2 = Xk + zk2 , while uk

1 and uk
2 are the running sums of the

residuals

uk
1 = u0

1 +

k∑
j=1

rj1

uk
2 = u0

2 +

k∑
j=1

rj2 (22)

Next, we turn the iteration into an explicit solution:

Xk+1 = Π1

(
1

2
(zk1 − uk

1) +
1

2
(zk2 − uk

2)

)

z
k+1

1 = Π2(X
k+1 + uk

1)

z
k+1

2 = S1/ρ(X
k+1 + uk

2)

uk+1
1 = uk

1 +Xk+1 − zk+1
1

uk+1
2 = uk

2 +Xk+1 − zk+1
2 , (23)

where Π1 is the projection operator in the Euclidean norm onto
{X ∈ Rn|ΦX = Y }, i.e.,

Π1(a) = argmin
X∗

{‖X∗ − a‖22 |ΦX∗ = Y }, (24)

Here, a = 1
2 ((z

k
1 − uk

1) +
1
2 (z

k
2 − uk

2)), Π2 is the projection
operator of set {z1 ∈ [0, 1]N

2}, i.e.,

Π2(c) = max(1,min(0, c)) (25)

where c = Xk+1 + uk
1 , and S is the soft-thresholding operator:

Sd(t) =

⎧⎨
⎩

t− d, t > d
0, |t| � d
t+ d, t < −d.

(26)

Remark 1: The updating process for x can be rewritten ex-
plicitly as

Xk+1 =
(
I − ΦT (ΦΦT )−1Φ

)
a+ΦT (ΦΦT )−1y. (27)

By setting a = 1
2 ((z

k
1 − uk

1) +
1
2 (z

k
2 − uk

2)), the Lagrangian
function becomes L(X, ν) = 1

2‖X∗ − a‖22 + ν‖ΦX∗ − Y ‖1,
where ν is the penalty parameter. Furthermore, Karush-Kuhn-
Tucker (KKT) conditions lead to matrix form(

I ΦTΦ
Φ 0

)(
X∗

ν

)
=

(
a
Y

)
, (28)

from which it follows that

X∗ =
(
I − ΦT (ΦΦT )−1Φ

)
a+ΦT (ΦΦT )−1Y. (29)

Thus, ADMM iterations become

xk+1 =
(
I − ΦT (ΦΦT )

−1
Φ
)
a+ΦT (ΦΦT )

−1
y

zk+1
1 = max(0,min(c, 1))

zk+1
2 = S1/ρ(x

k+1 + uk
2)

uk+1
1 = uk

1 + xk+1 − zk+1
1

uk+1
2 = uk

2 + xk+1 − zk+1
2 (30)

where a = 1
2 ((z

k
1 − uk

1) +
1
2 (z

k
2 − uk

2)) and c = Xk+1 + uk
1 .

In practice, observing all constituents of, or all interactions
in, complex systems is unfeasible, causing random errors or
systematic bias in sampling [47]. If the available data is erro-
neous in addition to being incomplete, we can write the ADMM
framework:

min
1

2
‖Φx− y‖+ g(z1) + ‖z2‖1

s.t.

{
x− z1 = 0
x− z2 = 0

(31)

and the iterations turn to

xk+1 = (ρI +ΦTΦ)−1

×
(
ΦT y + ρ

(
1

2

(
zk1 − uk

1

)
+

1

2
(zk2 − uk

2)

))

zk+1
1 = max(0,min(a, 1))

zk+1
2 = S1/ρ(x

k+1 + uk
2)

uk+1
1 = uk

1 + xk+1 − zk+1
1

uk+1
2 = uk

2 + xk+1 − zk+1
2 (32)

where a = 1
2 ((z

k
1 − uk

1) +
1
2 (z

k
2 − uk

2)), and the process of de-
riving the iterations is the same as in the case without noise. Ad-
ditionally, term ρI +ΦTΦ is always invertible because ρ > 0.
Thus, the numerical instability caused by the ill-conditioned
projection matrix is avoided.

The spark of a matrix is defined as the smallest number of
linearly dependent column-vectors from this matrix, i.e.,

spark(A) = min
b �=0
‖b‖0 s.t. Ab = 0 (33)

where b ∈ RN is a K-sparse vector and A ∈ RM×N is an
observation matrix. The termK-sparse means that the number of
nonzero elements of b is less than K. According to [17], given
a sparse signal, a linear system can be changed from having
an infinite number of solutions to having a unique solution in
compressive sensing theory under the condition that the spark of
the projection matrix is larger than twice the sparsity of the signal
vector, i.e., spark(A) > 2K, where K represents the sparsity
of the vector. However, in practical network reconstruction, the
projection matrix is defined by network structure and dynamics,
which do not always satisfy the RIP condition, especially with
heterogeneous networks. The main reason is that scale-free and
other heterogeneous networks include hub nodes whose adja-
cency vectors are far from being sparse. The RIP condition is thus
not guaranteed, making the reconstruction results practically
equivalent to random guessing; we call this an “inevitable flaw”
of compressive sensing in the reconstruction of scale-free or
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other heterogeneous complex networks. Assuming undirected
links, however, the node on either side of a link should yield
the same solution. If for hub nodes we encounter situations
that aij is not equal to aji, then the reconstruction process has
failed and needs to be improved. More formally, the adjacency
matrix of an undirected network is symmetric, and the network
reconstruction process should comply with the property that
aij = aji. This property can be utilized to replace the unreliable
values in adjacency vectors of hub nodes with the more reliable
values indicated by small-degree nodes. For example, if node i
is a hub node and node j is a small-degree node, then from the
perspective of compressive sensing aij is unreliable whereas aji
is reliable—aij should be replaced with aji.

The next problem is how to identify hub nodes. After per-
forming multiple tests, we found that an efficient unsupervised
clustering algorithm, K-means clustering [48], possesses the
desired traits, and can be exploited in combination with compres-
sive sensing to develop a robust reconstruction method for het-
erogeneous networks. The algorithm partitions network nodes
into two clusters, one for hub nodes, and the other for common,
small-degree nodes. K-means clustering can be viewed as a
highly effective structural classifier for hub and common nodes
in heterogeneous networks. Intuitively, an agent who is popular
in a certain group, can interact with more agents than other,
common agents; thus, the popular agent may have more chances
to play the game with others to gain a higher payoff, whereas
a common agent gains a much lower payoff under the same
conditions. We can conclude that in a networked evolutionary
game, the payoff of a hub node in a single round is higher than
the payoff of common nodes. To distinguish hub nodes from
common nodes, we stack the payoffs of each agent into a vector,
and then group all of the agents’ payoff vectors into two clusters,
one with more elements and the other with fewer elements. The
cluster with fewer elements is identified as the hub node cluster
because the number of hub nodes is small relative to the total
number of nodes in a heterogeneous network. After finding these
hub nodes, we use the reconstruction results for small-degree
nodes to replace those of the hub nodes. The replacement process
after clustering is implemented using the following steps:

1) Group the time-series-payoff data into two clusters and
choose the smaller one as the hub node set, denoted Γ.

2) Choose one of the hub nodes fromΓ and pick its adjacency
vector from A. For example, node i is a hub node, and Xi

is picked for revision.
3) Suppose that j indexes nodes linked to i. If j belongs

to Γ, then aij is kept unchanged because j is also a hub
node; otherwise, replaceaij withaji because the structural
information on j is more reliable.

The steps of the proposed method are shown in detail in
Algorithm 1 (sidebar), and an example of the application of
the proposed method is shown in Fig. 1.

IV. NUMERICAL EXPERIMENTS

A. Experiments With Accurate Observations

To illustrate the effectiveness of the proposed method, we
designed two scale-free (SF) networks [25] of different scales.

Fig. 1. An example of the application of the proposed method for network
structure reconstruction. The real structure of the network is shown on the right.
Quantity Yi represent observed values, and Φi represent the projection matrix,
where different colors indicate different real numbers. The two-color squares
in Xi represent whether there is (cyan) or there is not (white) a link between
node i and another network node (identified by the number in the square). In this
network, node 1 is connected to all other nodes, so all squares in its adjacency
vector are cyan except its own square (which is irrelevant). Nodes 2 and 3 have
fewer green squares than node 1 because they have fewer neighbors. We can see
that node 3 is sparse, unlike nodes 1 and 2, and it is linked to node 1, but not to
node 2. Therefore, node 3’s adjacency vector can be used to fix the estimated
adjacency vector of node 1, following Algorithm 1, by replacing a13 with a31.
However, node 3 cannot be used for a similar purpose in conjunction with node
2, nor can node 2 be used to infer the links of node 1.

Algorithm 1: Clustering-Based Approach (CBA).
Input:

Strategy vectors Si = [si(t1), si(t2), . . ., si(tM )]T , ∀i.
Payoff vectors Yi = [ui(t1), ui(t2), . . ., ui(tM )]T , ∀i.

Output:
Reconstructed adjacency matrix Â.

1: Step 1 (Data Preprocessing)
2: Step 1.1: Stack payoff vectors in

Y = [Y1, Y2, . . ., YN ]T .
3: Step 1.2: Use strategy vectors to calculate potential

payoffs Fij(t) and stack them into matrix Φ from
(15).

4: Step 2 (Preliminary Reconstruction):
5: Step 2.1: Calculate adjacency vector X based on Y ,

Φ,
and ADMM algorithm as in (16), (17), and (30).

6: Step 2.2: Reshape vector X into adjacency matrix
Â1

of the same dimensions as input adjacency matrix A.
7: Step 3 (Fine Tuning):
8: Step 3.1: Use K-means clustering to divide payoffs

Y into two clusters, then choose the smaller one
as the set of large-degree nodes denoted Γ.

9: Step 3.2:
10: for i in Γ:
11: Apply fine tuning to i’s adjacency vector in Â1

to obtain the final reconstructed matrix, Â.
12: end for
13: return Â.

One SF network has 50 nodes and the other has 100 nodes, where
both networks were created by preferentially attaching four new
nodes in each step of the generative process. The adjacency
matrix is the ground truth we want to reconstruct and the standard
by which to validate the proposed method. Data on every round
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TABLE I
CONFUSION MATRIX FOR THE BINARY CLASSIFICATION OF

PREDICTED OUTCOMES

of the network game, i.e., each node’s strategy and payoff, are
recorded in the form of time series. The amount of data used is
quantified by RD = L/N , where L is the length of the recorded
time-series data, and N is the number of nodes in the network.
To evaluate the reconstruction performance of the proposed
method, we employed two standard indices: the area under the
receiver operating characteristic curve (AUROC) and the area
under the precision-recall curve (AUPR). Additionally, we used
a binary classification test method. By comparing the standard,
i.e., the true adjacency matrix, with the predicted outcome, the
result for each node can be classified as a true positive (TP ), false
positive (FP ), true negative (TN ), or false negative (FN ). The
confusion matrix is shown in Table I. Based on this confusion
matrix, we calculated the method’s accuracy as

Accuracy =
TP + TN

TP + FP + TN + FN
. (34)

Note that we set a threshold to regularize values in the predicted
adjacency matrix. For example, if 0.1 is chosen as a threshold,
then the predicted value is set to 1 if it falls within interval [0.9,
1.1], whereas it is set to 0 if it falls within interval [−0.1, 0.1].
We used 0.1 as the threshold.

In numerical simulation, we compare the proposed method
to four other algorithms used in network reconstruction. First
is a standard algorithm based on Compressive Sensing Theory
(CST) that has been extensively documented in literature [19],
[22]. Matching Pursuit (MP) [49] and Orthogonal Matching
Pursuit (OMP) [50] are two famous dictionary learning algo-
rithms that can be applied to the network reconstruction problem
because the underlying mathematical abstraction is equivalent.
The OMP method is an upgraded version of the MP method.
Finally, Relevance Vector Machine (RVM) [51] is a sparse prob-
ability model similar to Support Vector Machine (SVM), and
represents a novel supervised learning method that incorporates
the elements of Bayesian theory. The RVM method is, among
others, applicable to network reconstruction problems [52].

Fig. 2 depicts the reconstruction results as a function of RD

in two artificial SF networks of different scale. The performance
of all methods increases with the amount of data, except that of
Matching Pursuit (MP). The performance of MP is close to 0.5
across the board, meaning that this method is just like random
guessing and the results are unreliable. The method proposed
herein (CBA) performs the best with the same amount of data,
whether measured by the AUPR or the AUROC value. The
mean values obtained using CBA are always higher than those
obtained by other classical algorithms, even when the amount
of data is relatively small.

We also tested the performance in two real networks with
different sizes. The first network is the famous social network

Fig. 2. AUPR and AUROC values, as functions of RD , of the reconstruction
results for SF networks of two different scales, based on time-series data obtained
from over 50 independent experiments. One network contains 50, and the other
100 nodes. The red squares and lines depict the results obtained by the traditional
compressive sensing theory-based method, the blue circles and lines depict those
obtained by the proposed method, the yellow triangles and lines depict those
obtained by MP, the green triangles and lines depict those obtained by OMP,
and violet diamonds and lines depict those obtained by RVM. The symbols
represent mean values, and the error bars denote standard deviations.

Fig. 3. Degree distributions of Karate (left) and Adjnoun (right) networks. In
both networks there are nodes with exceptionally high degrees. These are the
hub nodes for which standard CST reconstruction fails.

of friendships among 34 members of a karate club at a U.S.
university in the 1970s [28]. The Karate network has 34 nodes
and 78 edges. The second network is an adjacency network of
common adjectives and nouns in the novel David Copperfield
by Charles Dickens [30], which contains English adjectives and
nouns commonly occurring in the novel. This Adjnoun network
has 112 nodes and 425 edges. The node degree distributions of
the two networks are shown in Fig. 3.

In Fig. 3, we can see that both networks have a heterogeneous
degree distribution. It is obvious that agents 1 and 34 in the
Karate network, and nodes 1, 18, 44, and 52 in the Adjnoun
network, are hubs. Close to 50% of the elements in the adjacency
vectors of hub nodes are nonzero elements, which means that
these adjacency vectors are not sparse at all. Thus, in practice, it
is very difficult to reconstruct the hub nodes accurately, so these
nodes become bottlenecks in the CST performance. Fortunately,
our CBA method can find such hub nodes precisely and improve
the reconstruction of their adjacency vectors.
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Fig. 4. Comparing the performance of the proposed method to that of four
different algorithms for network reconstruction II. Shown are the AUPR and
AUROC curves as functions of RD obtained for the Karate network (left)
and the Adjnoun network (right) over the course of 50 independent numerical
experiments. Red squares, blue circles, yellow triangles, green inverted triangles,
and violet diamonds respectively denote the standard compressive sensing
algorithm (CST), matching pursuit (MP), orthogonal matching pursuit (OMP),
and Relevance Vector Machine (RVM). The symbols indicate mean values, and
the error bars denote standard deviations.

Fig. 4 shows the reconstruction results for two real-world
networks as a function of RD. Irrespective of whether per-
formance is evaluated by the AUPR or the AUROC values,
CBA performs better than other control algorithms when RD

is held fixed. In the Karate network, both AUPR and AUROC
curves increase more than other curves as RD increases. In the
Adjnoun network, although the performance difference between
CBA and CST is not obvious when RD is either very large or
very small, for intermediate RD values, especially from 0.3 to
0.7, the AUPR results for CBA are greatly improved compared
with those for other methods. The AUROC results do not differ
as much, but CBA performance is always better than CST
performance. In summary, these results show that the proposed
method is efficient in improving the reconstruction performance
in heterogeneous networks based on limited time-series data
without noise.

B. Experiments With Noise-Contaminated Observations

Although an ideal situation in which the observed data are
accurate is often assumed, in reality, the observed data con-
tain noise or include gaps for a variety of reasons, such as
measurement error or low-resolution observers. To evaluate the
robustness of our proposed method, we tested the effect of noise
on reconstruction performance. The observed noise is assumed
to originate from a uniform distribution with a range of [0, σ],
where σ is the noise amplitude. When two agents in a network
interact with each other, their observed payoffs contain noise.

Fig. 5 shows AUPR and AUROC reconstruction curves for
artificial networks, while Fig. 6 depicts the results for real
networks. The observed data sets for both types of network are
contaminated by noise (σ = 0.12). The results show that CBA is
more resistant to noise interference; regardless of the size of the

Fig. 5. AUPR and AUROC values, as functions of RD , of the reconstruction
results for SF networks with two different scales, based on noisy time-series data
obtained from over 50 independent experiments. One network contains 50, and
the other 100 nodes. The red squares and lines depict the results obtained by the
traditional compressive sensing theory-based method, the blue circles and lines
depict those obtained by the proposed method, the yellow triangles and lines
depict those obtained by MP, the green triangles and lines depict those obtained
by OMP, and violet diamonds and lines depict those obtained by RVM. The
symbols represent mean values, and the error bars denote standard deviations.
Noise amplitude σ = 0.12.

Fig. 6. Comparing the performance of the proposed method to that of four
different algorithms for network reconstruction IV. Shown are the AUPR and
AUROC curves as functions of RD obtained for the Karate network (left)
and the Adjnoun network (right) over the course of 50 independent numerical
experiments. Game data is contaminated with noise of amplitudeσ = 0.12. Red
squares, blue circles, yellow triangles, green inverted triangles, and violet dia-
monds respectively denote the standard compressive sensing algorithm (CST),
matching pursuit (MP), orthogonal matching pursuit (OMP), and Relevance
Vector Machine (RVM). The symbols indicate mean values, and the error bars
denote standard deviations.

network or the amount of data used for network reconstruction,
the performance remains stable.

Lastly, we summarize the effect of noise on CBA results
in Fig. 7. Even with noise amplitude σ = 1.2, which is equal
to the maximum value in the payoff matrix, the accuracy of
reconstruction for the two larger networks, calculated by (34),
is higher than 0.70, and the reconstruction accuracy for the two
smaller networks is higher than 0.55. Thus, CBA can efficiently
resist noise corrosion, even when the noise level is very high.
Furthermore, it is interesting to note that as the network size
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Fig. 7. Changes in the accuracy of the reconstruction results for the four
networks with increasing noise amplitude, based on 100 independent experi-
ments. The symbols represent mean values. The upper panels show the results
for artificial scale-free networks generated by the Barabási-Albert model with
50 and 100 nodes, and the lower panels show the results for the real Karate and
Adjnoun networks. The data ratio RD is 0.4.

Fig. 8. Comparing the performance of the proposed method to that of four
different algorithms for network reconstruction V. Shown are the AUPR and
AUROC curves as functions of RD obtained for the Watts-Strogatz (left)
and the Newman-Watts (right) small-world networks over the course of 50
independent numerical experiments. Both networks have 100 nodes and the
average degree of 20. Red squares, blue circles, yellow triangles, green inverted
triangles, and violet diamonds respectively denote the standard compressive
sensing algorithm (CST), matching pursuit (MP), orthogonal matching pursuit
(OMP), and Relevance Vector Machine (RVM). The symbols indicate mean
values, and the error bars denote standard deviations.

increases the results become more accurate. The reason may
lie in the fact that, as the network size increases, the networks
become sparser, which improves the efficiency of the proposed
method because this method is ultimately based on compressive
sensing.

C. Experiments on Homogeneous Networks

While our focus has been on heterogeneous networks, we
still wanted to test the performance of the proposed method
in homogeneous networks. Figs. 8 and 9 respectively show

Fig. 9. Comparing the performance of the proposed method to that of four
different algorithms for network reconstruction VI. Shown are the AUPR and
AUROC curves as functions ofRD obtained for the Watts-Strogatz (left) and the
Newman-Watts (right) small-world networks over the course of 50 independent
numerical experiments. Both networks have 100 nodes and the average degree of
20. Game data is contaminated with noise of amplitude σ = 0.12. Red squares,
blue circles, yellow triangles, green inverted triangles, and violet diamonds
respectively denote the standard compressive sensing algorithm (CST), match-
ing pursuit (MP), orthogonal matching pursuit (OMP), and Relevance Vector
Machine (RVM). The symbols indicate mean values, and the error bars denote
standard deviations.

the results of numerical experiments with accurate and noise-
contaminated observations. With accurate observations, CBA
maintains relatively good performance compared to the other
algorithms. This is because we stack the adjacency matrix into
one vector and perform reconstruction globally instead of locally
(when columns of the adjacency matrix are reconstructed one
by one). With noise-contaminated observations, however, the
performance is less impressive, although not any worse than
that of the other methods. The fine-tuning step by means of
clustering has no effect on the results because none of the nodes
are truly hubs, meaning that adjacency matrix elements aij and
aji are reconstructed with the same reliability.

V. CONCLUSION

It is difficult to reconstruct the underlying structure of com-
plex networks from observed data. Despite all the effort devoted
to this endeavor, few studies have considered the latent structural
information hidden in time-series data. Herein, we focused on
the reconstruction of heterogeneous network structures globally
based on game dynamics data. By analyzing the features of
heterogeneous networks as well as the shortcomings of com-
pressive sensing methodology, we developed a clustering-based
approach that could resolve the bottlenecks of network structure
reconstruction caused by hub nodes. Furthermore, we incorpo-
rated the binary feature of undirected networks into the proposed
method, and used the ADMM algorithm to solve the optimiza-
tion problem, further enhancing the accuracy. By comparing the
reconstruction results with multiple other methods, we showed
that the proposed method can efficiently improve reconstruction
performance and resist noise contamination. It is worth mention-
ing that, although we designed our approach with heterogeneous
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networks in mind, the reconstruction of homogeneous networks
is also possible.

We tested the algorithm on two artificial networks and two real
networks based on evolutionary game data, but the proposed
method can be extended to even more complex networks and
to other types of network dynamics. For example, it might be
worthwhile to extend the method to reconstruction from the
oscillator dynamics of synchronous networks. At present, we
have tested only undirected and unweighted networks, but the
proposed method may inspire future extensions to directed and
weighted networks with different types of constraints.

There is an important limitation to be addressed in future
work. Our method integrates the traditional decomposed net-
work reconstruction process into one optimization problem to
use the global nature of the network and improve the accuracy
of the results. However, as the number of nodes increases the
memory space required in the computer becomes larger and
larger. When the number of network nodes rises to a certain
level, a normal computer cannot satisfy the reconstruction task.
How to make a normal computer complete the task of large net-
work reconstruction, or in other words, how to disassemble the
network vector into multiple parts for distributed solution while
ensuring the global nature is a key future research direction. In
the meantime, our work sheds lights on network reconstruction
problem from the perspective of heterogeneous network struc-
ture, and provides a useful tool for network analysis and many
other potential applications.
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