2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE) | 978-1-6654-3441-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/RASSE53195.2021.9686839

False Data Injection Attack Testbed of Industrial
Cyber-Physical Systems of Process Industry and A
Detection Application

1*' Yichi Zhang
School of Automation
Central South University
Changsha, China
Email: zndxzyc@csu.edu.cn
ORCID: 0000-0002-2267-5442

2"l Wenfeng Deng
School of Automation
Central South University
Changsha, China

Abstract—False data injection (FDI) attack is a common and
destructive attack method in Industrial Cyber-Physical Systems
(ICPSs), which is mounted in the cyber layer, compromises
the measurement data and interferes the physical system at
last, especially in the process industry and smart grid. In
response, researchers developed many detection method rely
on simulation, but the real situations are not ideal simulation
environment. This leads to situation in which the high-level
methods cannot applied to industrial sites directly. In this paper,
we design a testbed of process industry, which is a hardware-in-
the-loop platform, to simulate the real industrial production and
applied a FDI attack on the platform. The physical process is
simulated by a host, and the cyber items are real industrial
controller or engineer station. Next, we design an efficient
FDI attack detection method, DRIF. Based on our proposed
framework, the optimal potential features of high-dimensional
industrial process data can be fully extracted, which is conducive
to the stage of accurate detection. In addition, it makes our
proposed method practicable in real-world scenarios where data
instances in normal condition can be used for model training
only. The proposed method is applied on the designed platform,
and the promising case studies show our framework can achieve
satisfactory detection performance, which sheds light on the
industrial security to some extent.

Index Terms—Industrial Cyber-Physical Systems, false data
injection, attack detection, hardware-in-the-loop platform

1. INTRODUCTION

Industrial Cyber-Physical Systems (ICPSs) are highly com-
plex systems with comprehensive computing, cyberspace, and
physical process [1]. Through computation, communication,
and control (3C), the original isolated industrial manufactur-
ing systems can be upgraded by powerful engineering tech-
niques and tools such as pattern recognition [2], optimization
[3], prediction control [4], machine learning [5], etc. However,
to make production more efficient, these powerful techniques
usually collect data from physical processes to train their
high-level model. Therefore, the originally isolated plants are
needed to connect to the external network, and due to the
limited resources (energy, expenditure, and bandwidth) and
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remote unattended operation, these nearly semi-open systems
are easily suffering widely cyber-attacks [6], [7], such as the
“Sapphire Worm” virus in the United States in 2003 [8], the
“Stuxnet” virus in Iran in 2010 [9] and the world-shaking
blackout in Ukraine in 2015 [10].

False data injection (FDI) attacks are common in power
networks [11], control systems [12], and wireless sensor net-
works [13], and researchers have focused on these problems
extensively. For example, Liu et al. [14] proposed a sparse
optimization method based on the slow change of power grid
system state and FDI attack sparsity. Rigatos et al. [15] use
the Kalman filter to estimate the state of a control system
and use statistical decisions to identify the working condition.
Besides, there are also some pieces of research, such as [16],
[17], which use data-driven methods to determine whether the
systems are in normal working condition by extracting the
relationship between the system state and monitoring data.
Very recently, with the dramatic development of artificial
intelligence, deep learning methods are widely used in cyber-
attack identification, which has greatly promoted the devel-
opment of industrial security research. For example, He et
al. [18] proposed Conditional Gaussian-Bernoulli Restricted
Boltzmann Machine (CGBRBM) which utilizes the deep
learning architecture to identify the FDI attack. However,
most of the intrusion detection methods, including FDI attack,
rely on the simulation environment, and it is hard to apply
these methods to the industrial site directly. In summary, there
are three difficulties:

1) Artificial intelligence is a powerful tool, but it usually re-
quires high-quality data to train a high-precision model.
However, in real conditions, the data distributions are
very unbalanced, which means that positive samples are
usually readily available while the negative ones are not,
indicating the overall data acquired is not representative.
This leads to difficulties in the model training phase.

2) Some methods rely on state estimation, but the state
transition equations are difficult to obtain because most
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systems in the real process industry are non-linear sys-
tems. This is a great obstacle to the application of these
methods in manufacturing systems.

3) There are many units, including equipment and subsys-
tems, in a process industry, and each unit may have
some input, output, and control variable value. The sum
of them may cause the high dimension of the data
acquired by SCADA at the same time. It is a tough
task to rapidly train a high-accuracy model with limited
computing resources.

In order to evaluate the performance of the data mining and
machine learning algorithms for ICPS systems, a verification
platform with is required. Therefore, we build a hardware-
in-the-loop ICPS platform with a simulation host and real
network devices. At the same time, we propose our own FDI
detection Framework, DRIF, and applied it on the platform
we built.

Here are the contributions:

o A hard-in-the-loop platform, which can be adjusted to
different real industrial scenarios, is designed and built
to test and mine the scientific problems.

« Dimensionality Reduction and Identification Framework
(DRIF) is proposed to detect a designed false data
injection attacks, which can not be detected by general
bad data x? detector.

o DRIF is composed of hierarchical Self-Organizing Map
(SOM) and Support Vector Data Description (SVDD),
where SOM is used for data dimension reduction and
SVDD is used to detect the anormal behavior of the
system precisely. The combination of SOM and SVDD
improves the calculating efficiency and detecting perfor-
mance.

The rest of the paper is organized as follows: In Section
II, the architecture of the hardware-in-the-loop platform and
the theory of FDI attack is introduced. The proposed FDI
attack detection method, DRIF, is illustrated in Section III.
Experiments results of case study are shown in Section IV.
And the conclusion of this paper is in Section V.

II. TESTBED DESCRIPTION

A. Hardware-in-the-Loop Platform

To test the performance of high-level methods of FDI attack
or other type of intrusion detection methods, we build a
hardware-in-the-loop system. The architecture is shown in
Fig. 1. There are two layers in this platform: Cyber layer
and Physical layer.

In the physical layer, the physical process is simulated on
a high-performance computer which is called the simulation
host. And the physical process, including chemical reaction,
used in this platform comes from a classical Tennessee East-
man (TE) industrial process described in [19]. The simulation
host is connected to a switch to transfer sensor measurements
and receive the control command from a high-level controller.
The system noise is the same as [19].
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Fig. 1. The architecture of hardware-in-the-loop simulation platform

In the cyber layer, two PLCs are connected to a switch,
which is linked to the simulation host, and they take on
two functions: (1) PLCs obtain the sensor measurements
from simulation and upload them to the operator station and
engineer station. (2) PLCs calculate and issue the new control
commands to control the simulation to operate normally. The
PLCs use Modbus/TCP communication protocol to exchange
data with the simulation host. In addition, go up through a
firewall from a switch, there are one operator station and one
engineer station connected. They can obtain the measurements
for monitoring from PLCs and change the production state
by changing the production parameter of PLCs. The data
collection and command issuance system in the engineer
station constitutes the SCADA system in actual production
applications. At last, all the data will be sent to the cloud
server from the engineer station and stored in a Transwrap
Inceptor Database for analysis. The control variables and
measurement variables are the data that is collected by our
data acquiring system, and the description and measurement
unit of them can be referred in [19].

B. False Data Injection Attack

Consider the following discrete nonlinear system where the
state transition function and observation function are defined

= 2k +1) = f(@(k)) + w(k)
y(k) = h(z(k)) + o(k)

where z(k + 1) € R™ is the state system with n, € ZT,
y(k) € R™ is the sensor measurement with n, € Z* at
time point k, respectively. w(k) € R™= is the process noise,
v(k) € R™ is the measurement noise, and w(k) and v(k)
are uncorrelated zero mean Gaussian noises with covariance
> wand > . f () represents the nonlinear state function and
h (+) is the nonlinear observation function.

FDI attack aims at the cheap communication system in the
production industry. It may hijack the communication line

(1)
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or tamper with the data block to achieve its purpose. Any
successful attack will significantly hamper the economy, the
environment or may even lead to loss of human life. In order
to detect and reduce the catastrophic consequences of FDI
attacks, relevant theory needs to be introduced first.

—_—_— - — - — - — - —
Accident B
Analysis Bad State
Data
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Optimal
Scheduling |~

SCADA System

Fig. 2. The location of false data injection attack. Hackers can attack any of
the three locations of sensor value, communication connection, and SCADA
data block, to complete the FDI attack task.

The FDI attack may occur in three locations which are
shown in Fig. 2, where the hacker attempts to modify the
observation y ultimately. In a real industrial SCADA (Super-
visory Control And Data Acquisition) system, a client usually
deploys a bad data detector (BDD), which will estimate the
system state £ and then calculate the measurement residue
r between actual observation y and estimation h(Z), the
relationship is shown in Eq. (2).

r=y—h(2) (2)

In addition, most of the bad data detector in control systems
are y? detectors, they compute the following equation:

g=r"P'r 3)

where P is the covariance matrix of residue y(k). Because
of the existence of measure noise, residue r should follow
the Gaussian distribution with zero mean. Therefore, g will
be close to 0. Then the x? detector can be used to compare
with a certain threshold which is calculated from historical
data for implementation. If g is larger than the pre-determined
threshold, the system will trigger a bad data alarm.

Ta =Ya = h(2a)
= Ya — h(2a) + h(z) — h(z)
=y+a—h(z,) + h(z) — h(z)
=r+a—h(z,)+ h(z)

“4)

However, there are many pieces of research, such as [7],
[12], proposed that if a hacker designs a certain attack, a x?
detector will be malfunctioned. For example, assuming that
x is the true state vector and z, represents the attacked state
vector which is expected and injected by a hacker. y, = y+a
means the injected malicious data y, can be represented by

the sum of true measure y and inject measure a. Therefore,
the residue under attack is represented by Eq. (4).

From Eq. (4), if a hacker desires to bypass the residue test,
the condition of r, = r should be satisfied. As a result, the
injected measurement should be determined as:

a = h(z,) — h(x) 5)

The results show that the designed attack can pass the residue
test and make an impact on the industrial systems.

In this platform, it is assumed that the attack launches from
the cyberspace, and the hacker is powerful enough to bypass
the BBD deployed in the cyber layer. Therefore, we set up
an attack computer separately in the cyber layer, besides the
operator station and engineer station. The place is shown in
Fig. 1. The attack target is the data block in PLCs, and the
attack action is to change the production sensor measurement
and cheat the y? bad data identifier. Then we use a self-
developed attack script to steal the sensor measurements and
inject the false data to the engineer station at the moment we
set in advance.

III. DETECTION METHOD

FDI attack seriously affects the normal operation of an
industrial system, but the detection of it is not a simple job.
SCADA system acquires data periodically, and the time period
of data polling time is not frequent, this consequence leads
to that the data cannot capture the temporal pattern of an
industrial system, but only state condition. Therefore, some
methods, which rely on the state transaction equations, will
not perform well. In addition, the data is very imbalanced
because the negative samples are far less than positive ones,
its difficult for methods which need a certain amount negative
samples to train a good classifier. At the same time, the
dimension of data is very high, which means it is a tough
task to rapidly train a model or test. Hence, if we can find a
method which not only can reduce the dimension of the data,
but also maintain the state feature, besides that, the method
can also deal with one-class sample training and save time.
Fortunately, we can use a novel combination of two classic
methods to satisfy our requirements. SOM [20] can be used
for data feature extraction and SVDD [21] is a popular one-
class classifier.

A. Related Work

a) SOM: Self-Organized-Map (SOM) is a typical artifi-
cial neural network that is trained by unsupervised learning
which is called competitive learning rules, and we use it
to produce a low dimension data here. A SOM training
phase including competition, cooperation, and adaptation. The
important variables used in SOM is shown in Tab. 1.

And the training step is as follows:

b) SVDD: Support Vector Data Description (SVDD)
was proposed by Tax and Duin [22] for getting a good
description of training data. SVDD computes a spherical
decision boundary for most training data. And samples outside
are treated as outliers. Strong generalization ability is the
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TABLE I
THE IMPORTANT SYMBOLS USED IN SOM

Symbols Descriptions

The current iteration

Iteration limit

Index of the target input data vector in input data set D
Input data vector

Index of the node in SOM

» The current weight vector of node v

éd g >

u Index of the best match unit (BMU) in SOM
O(u,v,s) Restraint due to distance from BMU
e Learning restraint due to iteration progress.

Algorithm 1 SOM Training

Require: Training data of a certain data group D.

Ensure: SOM net
1. Create a square SOM net and the node number is related
to the input dimension.
2. Select one input vector and calculate the dot product
with each node in the map and find the BMU .
3. Update the weight vectors of the nodes in the neighbor-
hood of the BMU by:

Wy(s+1) =Wy(s) 40(u,v,s)-a(s) - (D(t) — Wv(s()g)

4. k=k+1
5. Repeat step 2,3,4 until £ > A

characteristic of SVDD, but as the data dimension increases
the training speed increases greatly.

Assuming that, there is a group of training data x € R"*?,
where n is the sample number, and d is the dimension of
training data. We use a transform function ® : x — F to map
the data from the original space to the feature space, and most
of the transform functions are Gaussian kernels with scale .
Then the smallest size hypersphere will be calculated. But to
find this sphere, the following optimization problem is needed
to be solved:

minR?+C Y &

a.R.¢ =1

st]|®(x;) —a|? <R*+6,6>0,Vi=1,2,---,n
@)

where R is the radius of the hypersphere, a is the center, and
¢ is the relaxation factor, and C' is the penalty parameter that
weights the volume of the hypersphere and the misclassifi-
cation rate. Combined with the Lagrange multiplier method,
the dual problem of the original problem is:

ming, - > oK (xi,%5) — 30 oK (x4, %)
i=1j=1 i=1
n (8)
st.0<a; <C, > ;=1
i=1

where «; is the Lagrangian coefficient of the sample x;. K (+)
is the kernel function that is equal to the inner product of the
sample in the feature space, K (x;,%x;) = (P (x;), P (x;)).
Therefore, the center and radius of the hypersphere are
respectively by:

a= Z *La;®(x;) 9)

R=,|K (xv,Xy) — QiaiK(xv,xi) + zn:zn:oeiaj]((xi,xj)
i=1

i=1 j=1

(10)

At the same time, the distance between the test sample x;
and hypersphere center is:

d= | K (x¢,%x¢) — ZZaiK(xt,xi) + ZZOQOCJ'K (xi,%;)
i=1

i=1 j=1
(11)

SVDD method can train a strong one-class classifier ef-
ficiently, but the speed will decrease dramatically with the
dimension increases of training data. But here, data division
rules in the proposed framework may help a lot to reduce the
data dimension. At first, data will be separated and sent to
their corresponding SOM, each SOM will output a value that
is equal to the distance between new data and its champion
node. Then, we stack these values into one vector as a piece of
feature data. This feature data maintains the features of the
original high dimensional data, and the dimension is much
smaller. In this way, the speed of SVDD model training is
improved.

B. DRIF Framework

D]mens‘lon Classification
Reduction
Industrail Process
NSV
. Data SOM 1
Unit 1 —> Group1 — ! @
L /"4
Y VY'Y ey
: Data SOM 2
Unit 2 —» Group 2 @
L SVDD
) [ ]
s o o
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Dat TsomMN''
. ata
>

Fig. 3. The framework of DRIF

In this part, we will introduce the framework of Dimen-
sionality Reduction and Identification Framework (DRIF).
Specifically, it contains two processes: dimension reduction
and classification, which is illustrated in Fig. 3. There are
many subsystems and a lot of equipment in a process industry,
and they are connected to each other through production
processes and procedures. Here, we treat these subsystems
or equipment as different production units. Industrial raw
materials pass through each unit and are finally made into
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corresponding products. In a certain unit, control systems
control the chemical reactions of input materials and produce
new ones. Hence, the data of each unit include the input,
output, and control variables. At one time point, a group data
of sensors is collected by the SCADA system. We group the
data for different units send them to their corresponding Self-
Organized-Maps (SOM) network. Through the calculation
of each corresponding SOM, the input data vector will be
abstracted into one feature value. Then, these feature values
are stacked into one feature vector and sent to the Support
Vector Data Description (SVDD) classifier. The classifier
will determine whether the system is suffering a false data
injection attack at this time.

The whole detection process of the proposed framework is
shown in Algorithm 2:

Algorithm 2 DRIF

Require: Real-time measurement data D;.

Ensure: The label of the data, 1 or -1.
1. Data division and send each group of data to their
corresponding SOM.
2. SOM calculates the distance between the input data and
its BMU.
3. Stack every value which is calculated by SOM into one
vector V.
4. Send the feature vector Vy to SVDD and calculate the
distance d between this data instance and the center of the
hypersphere.
5. Compare the distance d with the radius of the hyper-
sphere R. If d > R, we determine this piece of data is under
false data injection attack, and label it with -1. Otherwise,
the instance is healthy operation data and labeled with 1.

C. Data Division Rules

In order to reduce the data dimension while retaining the
data feature, we group the data and use different SOMs for
data feature extraction. In a real industry scenario, different
production units undertake different functions. For one unit,
the amount of each kind of input material, the amount of
each output material, and the control system variables are all
influencing factors. Every factor is the manifestation of the
state of this production unit. Hence, we put the input, output,
and control variables that are related to a certain unit together,
and this is the data group of this certain unit. It is worth noting
that, the production units are connected with each other with
the rule of the production process, and one unit’s output will
be another unit’s input. Therefore, part of the data will be
reused according to our data division rules.

IV. EXPERIMENTS
A. Configuration of DRIF

Before DRIF is used for false data injection attack detec-
tion, we declare the parameters setting of DRIF, including
neuron number of SOM, training iterations, the variance of
Gaussian kernel in SVDD.

e The number of neurons of SOMs in the dimension
reduction phase is equal to the square root of the size
of the input data. This way of specifying the number
of neurons proved that it can maintain a relatively high
discriminatory capability, while reducing computational
overhead [23].

o The number of iteration in SOM training is usually set
as 500 times the number of neurons [24].

o The import hyperparameters of SVDD are scale v and
penalty parameter C. Here, we choose a group of rela-
tively good hyperparameters v = 0.01,C' = 0.9.

B. Results Analysis

By comparing the standard, i.e., the true data label, with
the predicted outcome, the result for each test instance can
be classified as a true positive (TF), false positive (FP), true
negative (TN), or false negative (FN). The confusion matrix
is shown in Tab. II. In order to demonstrate the efficiency of
the proposed method, we choose several evaluation indexes,
false alarm rate (FAR), false detection rate (FDR) [25], and
accuracy [26]. The definition is shown below:

TABLE II
CONFUSION MATRIX FOR THE BINARY CLASSIFICATION OF PREDICTED
OUTCOMES

Predicted Label
Positive Class  Negative Class

Positive Class TP FN
Actual Label Negative Class FP TN
FN
FAR= ——— 12
TP+ FN a2)
TN
FDR= —— 13
R FP+TN (13)
TP+TN
A = 14
Y = TP Y FP+ TN 1+ FN (14

a) Framework Validity: In this experiment, we collected
data of 7200 time points of operation state in chronological
order, and when the 5400th time point was reached, the hacker
conducted a false data injection attack and tamper the data of
reaction press to a relatively high value, this kind of attack can
affect the industrial production even destroy the production
equipment and cause great financial loss.

Here, we choose the first 4000 pieces of data, which are all
positive samples, to train our framework. Other 3200 pieces
of data are treated as the test dataset. In the test dataset,
1400 at the front are positive samples, and other samples
are attacked. The results are shown in the Fig. 4. The gray
line in Fig. 4 is the distance between the test data instance
and the hypersphere center, and the red line represents the
hypersphere radius. If one distance of test instance to the
center is larger than the radius R, the instance will be treated
as being attacked. The statistic results are shown at the top
of Fig. 4, FAR is smaller than 1 percent and FDR is nearly
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TABLE III
THE FEASIBILITY EXPERIMENT RESULTS OF DATA DIVISION

Training Sample Size Method FAR FDR Accuracy  Training Time (s)
2100 . DRIF o 0.0055  0.9900 0.9925 6.0084
DRIF without data division ~ 0.0014  0.9961 0.9975 10.7233
4000 ‘ DRIF o 0.0050  0.9900 0.9929 34.8656
DRIF without data division ~ 0.0007  0.9961 0.9978 45.5481

FAR=0.6%, FDR=99.1%
1.2

1.1

T

1.0

T

0.6 —

0 500 1000 1500 2000 2500 3000
Sample Number

Fig. 4. The detection results of DRIF on test data set. The gray line represent
the distance of the test data instance and hypersphere center of DRIF, and the
red line represents the distinguish threshold of the normal data and attacked
data.

100 percent. In summary, our proposed false data injection
attack detection framework, DRIF, can accurately identify the
normal data and attacked data.

b) Data Division Feasibility: DRIF will group the data
for each equipment or subsystems, and train the corresponding
SOM net parallelly, but the data that each SOM used is not
global. Under the premise of loss of global information, is
the DRIF framework worthwhile? To explore the efficiency
about the data division rules, we make a comparison with a
method which will not spilt the data. The results are shown
in the Tab. III.

From Tab. III, we can find that the value of evaluation
indexes of DRIF without data division are a little better than
DRIF, because it use the data global information. However,
the advance of is not obvious, and the training time of it is
much longer than DRIF instead. In condition of the model
accuracy loss can be accepted, DRIF can effectively improve
the model training speed because of the parallel training
strategy.

V. CONCLUSION

In this paper, we introduce the hardware-in-the-loop plat-
form built to test the advanced algorithm on actual industrial

sites. The platform is composed of two layers, Physical layer
and Cyber layer. The physical layer is a simulation host which
simulates the real industrial chemical reaction mechanism
process to generate the production data measured by sensors.
And the Cyber layer is composed of real networked devices,
including PLCs, switches, and computers. These devices can
obtain the production measurement data and issue the control
command. All the data can be stored in the cloud server
for analysis. At the same time, we propose our false data
injection attack detection framework, called DRIF, and apply
it on the platform for validation. In this framework, for data
of different production units, we set corresponding SOM to
reduce the data dimension and extract the optimal features,
where different SOMs can be trained parallelly for efficiency
improvement. Then the extracted features are stacked into
one vector and sent to the SVDD classifier to determine
whether the system is in normal operation mode. DRIF
has demonstrated its ability to identify most of the limited
and compromised measurements with low FAR, and high
FDR and accuracy while only normal operation data can be
offered during training. We hope our platform architecture
and FDI identification framework can clarify the importance
of industrial security detection to some extent.
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