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How did cooperation evolve in a complex network is an intensely investigated problem. Many mech-
anisms that promote cooperation have been proposed within the framework of the evolutionary game
theory. Motivated by the fact that people in society or even a certain group are often controlled by a
variety of simple rules, we present an external forcing mechanism to analyze the underlying reasons
of widespread cooperation in this paper. In detail, we model the agents on a simple regular network,
on which the learning method is controlled by external forcing mechanism, and prisoner’s dilemma
has been applied to describe the interaction of agents. By conducting large-scale Monte Carlo sim-
ulations, we can easily draw a conclusion that this mechanism can promote cooperation efficiently.
In addition, we also show that the proposed mechanism is effective for the cooperation promotion
for other game models, such as snowdrift game and multigames. Taken together, the mechanism of
external forcing on the evolutionary game is a strong promoter of cooperation even under a severe
temptation condition, which has a practical significance and will provide new insight into the analy-
sis and control of cooperative strategy in the complex network for the further research. Published by
AIP Publishing. https://doi.org/10.1063/1.5040714

The emergence of cooperation among agents in sociality
has been an intensely investigated problem for years. Typ-
ically, it was often studied within the framework of evo-
lutionary game theory. Many effective mechanisms have
been proved to be useful for cooperation when they can
promote cooperators to form into clusters. Here, the coop-
erators’ clusters can resist the invasion of defectors. In this
paper, we present an external forcing mechanism to ana-
lyze the underlying reasons of widespread cooperation. In
detail, we model the agents on a simple regular network,
on which the learning method is controlled by an external
forcing mechanism. Numerical results demonstrate that
the proposed mechanism can promote cooperation effi-
ciently. Moreover, our results also demonstrate that the
proposed mechanism is robust for different kinds of game
models, such as snowdrift game and multigames. There-
fore, we can conclude that the mechanism of external
forcing on the evolutionary game is a strong promoter
of cooperation even under a severe temptation condition,
which has a practical significance and will provide new
insight in resolving the cooperation puzzle for further
research.

I. INTRODUCTION

In reality, there are a large number of agents, who
often interact with each other for the purpose of a limited
resource, and hence the conflict between different agents
occurs. According to Darwin’s theory, most of the agents will
select the defection strategy at the end. However, coopera-
tion phenomenon is ubiquitously observed in the real world

a)Electronic mail: zhenwang0@gmail.com

and in different organizations, such as microorganisms, ani-
mal groups, and human societies. Therefore, the problem
called social dilemma occurs.1,2 Mathematically, the topol-
ogy of interaction between these agents is often modelled by
the complex network,3–9 such as regular lattice, small-world
networks, scale-free networks, and so on. The interaction, on
the other hand, is often described under the framework of
the evolutionary game theory.10–13 Thus, the subject of net-
worked evolutionary game appears, and has attracted much
attention from multiple disciplines such as biology, physics,
mathematics, and engineering.13–18

For the networked evolutionary game theory, it assumes
that bounded rational agents are interacting repeatedly, and
all the agents will update their strategies according to some
adaptation and learning rules.10 Clearly, the dynamics of
the networked evolutionary game includes three fundamental
elements: (1) the network model, (2) the strategic decision-
making model, and (3) the game model. The pioneering work
of the network model for the social dilemma was put for-
ward by Nowak and May in 1992, which shows that the
regular lattice can induce the emergence of cooperation in a
prisoner’s dilemma environment by network reciprocity.19,20

Along with this line, the network model of agents have been
extensively studied, including the scale-free networks,21 hier-
archy networks,22,23 and interdependent networks,24–27 and
these network models have been proved to be valuable for
solving the dilemma to some extent.

For game model, the repeated prisoner’s dilemma and
the snowdrift game served as two paradigms for express-
ing a social dilemma in the evolutionary game theory.28–34

In addition, as agents in the complex network may have
heterogeneous perceptions for the social dilemma, the multi-
game model also has been proposed.35,36 Besides, the
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mechanisms related to strategic decision-making for resolv-
ing the social dilemma have been introduced, such as
reputation,37–39 punishment and reward,40,41 and mobility of
agents,42,43 to name but a few.

Generally, the previous works mainly consider that agents
in the complex network can choose their strategies freely.
However, the situation is not consistent with reality. In fact,
there are always a variety of simple rules to restrict the agents’
activity in the society or even a certain group. Therefore, we
introduce a mechanism that the agent can update his strategy
by a simple external force. In detail, we model the population
on a simple regular network, on which the learning method
is controlled by the external forcing mechanism, and pris-
oner’s dilemma, snowdrift game, as well as multigames are
used to describe the interaction of agents. To the best of our
knowledge, few papers discuss the effect of the external forc-
ing mechanism on the evolutionary dynamics, therefore, it is
meaningful for solving the puzzle of social dilemma.

The rest of the paper is organized as follows: Sec. II
introduces the mathematical model of the evolutionary game
dynamics in the complex network. Section III explores the
emergence of cooperation in the complex network by the pro-
posed external forcing mechanism according to the large-scale
Monte Carlo simulations. The concluding remarks are given
in Sec. IV.

II. THE MODEL

As we all know, our society may operate smoothly
and harmoniously because of legal documents that every-
one abides by. These documents with only a few lines of
words have played an important role in promoting the society
towards the development of imagination as a kind of external
force. Motivated by this fact, we present an external forcing
mechanism to analyze the underlying reason for widespread
cooperation in the complex network in this paper. Mathe-
matically, we model the agents in a simple regular network,
on which the learning method is controlled by the exter-
nal forcing mechanism, and evolutionary prisoner’s dilemma,
snowdrift game and multigames have been applied to describe
the interaction of agents.

In the evolutionary game model, each agent in the game
could choose cooperation or defection. Here, the mutual coop-
eration obtains the reward R, the mutual defection yields
the punishment P, and the mixed choice gives cooperator
the sucker’s payoff S and defector the temptation T . The
payoff ranking of traditional prisoner’s dilemma game is
T > R > P > S, so we know that punishment P should be
larger than sucker’s payoff S. It is necessary to emphasize
that we adopt T = b, R = 1, S = 0, and P = 0 (namely, weak
prisoner’s dilemma), but the results are robust and could be
observed in the full parameterized space. For the snowdrift
game, cost-to-benefit ratio r (0 < r < 1) is imported, where
the expected benefits of trying to cooperate or betray are the
same as an opponent. Then, the reward for mutual coopera-
tion R = 1, the temptation to defect T = 1 + r, the sucker’s
payoff S = 1 − r, and the punishment for mutual defection
P = 0. So, the payoff matrices of the above games are shown,

respectively, as

PPDG =
(

1 0
b 0

)
, (1)

PSDG =
(

1 1 − r
1 + r 0

)
. (2)

For multigames, the payoff matrix is shown as Eq. (3). Here,
the same value of S represents individuals with the same
social dilemma. Especially, all the agents choose to apply
S = +� or S = −� with equal probability. Similarly, one-
half of the agents play the traditional prisoner’s dilemma,
while the other half partly plays the snowdrift game. The
distributions of positive and negative S are the same, which
indicate that the average overall payoff matrices return the
weak prisoner’s dilemma. Therefore, the multigames are con-
venient for comparisons with the case of pure weak prisoner’s
dilemma. Primarily, we deem that the agents, who partici-
pate in multigames, do not change their payoff matrix once
choosing their game model at the very beginning.

PMG =
(

1 S
b 0

)
. (3)

We study evolutionary cooperation game with agents occupy-
ing each vertex on an N = L × L square lattice with periodic
boundary. Each agent opts to act as a cooperator or a defector
with equal probability. And we utilize Moore neighborhood,
also known as, every agent interacts with its k = 8 nearest
neighbors. Agents would get their corresponding payoffs after
each round of evolutionary game. We deem that the pay-
offs are simultaneously accumulated by interacting with their
closest neighbors.

Agents interact with their neighbors in each game round,
and each one will update its strategies, after they all have
grabbed payoffs in this round. At this stage, we could intro-
duce the external forcing mechanism that enables the popula-
tion to have considerable cooperation even in high temptation
T situations. Just as there are still behaviors that do not abide
by the rules under the conditions of regular constrains, the
constrains of external forces can only be effective to some
extent. In detail, we incorporated the external forcing mecha-
nism by the following setting: each agent has the probability
Pr (0 ≤ Pr ≤ 1) to learn the strategy C (to be a cooperator in
the next round), and then has the probability 1 − Pr to choose
the strategy of one of his neighbors. Assume that one agent i
is not controlled by the external forcing mechanism, he will
choose one of his neighbors j randomly to update his strategy.
Specifically, when Pr = 0, which is reduced to the traditional
case, namely, no external force for agents in the complex net-
work. According to Fermi rule, the probability of agent i to
opt agent j’s strategy depends on their payoff difference:44

W
[
si (t + 1) = sj (t)

] = 1

1 + exp
{[

�i (t) − �j (t)
]
/K

} ,

(4)
where K indicates the uncertainty of strategy learning
process,45 and the uncertainty is often related to the strat-
egy adoption process, serving to avoid trapped conditions and
enabling smooth transitions towards stationary states. �i (t) is
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FIG. 1. Proportion of cooperators ρC on the square lattice changes with temp-
tation b in the prisoner’s dilemma, as acquired with different strengths of
external forcing mechanism represented by Pr. Presented results are obtained
for K = 0.1. The proportion of cooperators ρC at the stable state decreases as
b increases, but faster when external forcing mechanism is missing.

the payoff of agent i in the tth step, which can be calculated
as follows:

�i (t) =
∑

j∈�i
sT

i (t)PM sj (t) . (5)

Here, PM is the payoff matrix of game model. sx is the
strategy of agent x, when the agent x chooses cooperation,
sx = [1, 0]T , on the contrary, when the agent x chooses defec-
tion, sx = [0, 1]T .

We simulate the evolutionary game under the classic
Monte Carlo simulation scheme, and the simulation results are
obtained from the regular square lattice with N = 100 × 100.
Near phase transition points we have further increased the sys-
tem size to avoid accidental extinctions and to ensure suitable
accuracy. The proportion of cooperators through the whole

FIG. 2. Proportion of cooperators ρc on the square lattice changes with uncer-
tainty of the strategy selection K in the prisoner’s dilemma game, as acquired
with different strengths of external forcing and different temptation b = 1.5.
The higher the K, as well as the more chaotic the environment, the higher the
proportion of cooperators. At the same K value, the stronger external forc-
ing, the more effective to maintain the proportion of cooperators for the slope
more steep.

FIG. 3. Time courses of the proportions of cooperators ρC in the prisoner’s
dilemma game on the square lattice, as acquired without and with differ-
ent intensive external forcing. Presented results are obtained for K = 0.1,
b = 1.18. Defectors occupy the major position for the curve decreases in the
early period stage; however, the external forcing re-raised the proportion of
cooperators and kept it till the stable state, in contrast, defectors invade this
testing group without control from the external forcing. And the cooperators
occupy the major position when the external forcing reach a certain level as
the curve keeps climbing at the early stage when Pr = 0.3.

network is represented by ρc, which is used as an evaluation
standard for the cooperation of the population. We get the pro-
portion ρc by calculating the average value from the last 1000
steps after enough long transient is discarded, namely, when
the system steps into the stationary state. In order to guarantee
higher accuracy, the final results are obtained from the average
of 20 independent experiments.

III. NUMERICAL RESULTS

The impact of external forcing mechanism on main-
taining the proportion of cooperation was detected through
the Monte Carlo simulation method in the scenarios where
the above game model occurred. There are many previous
works36,46 indicating that cooperative agents can coexist with
defection agents in spatial populations due to network reci-
procity. At the same time, the introduction of external forcing
mechanism could make a significant impact on the changes
in cooperative strategy. Now, we exploit the effect of external
forcing mechanism on cooperative strategy evolution.

As we all know, cooperators are extinct when the temp-
tation to defect T = b increases by a very small amount
(i.e., 1.04) in a spatial prisoner’s dilemma. Thus, it is very
important to propose a new mechanism to maintain the pro-
portion of cooperation in the same circumstances. As it is
shown in Fig. 1, the proportion of cooperators ρc at the stable
state depends on the temptation to defect T = b in prisoner’s
dilemma. When agents play the evolutionary game with their
neighbors and lean the strategy on their own, the model degen-
erated to classical prisoner’s dilemma game and the evolution
of cooperative strategy totally depend on the spatial reci-
procity. In this case, the level of cooperation is remarkably
low and declines quickly. Five polylines represent the vari-
ation of the proportion of cooperation ρc with increasing
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FIG. 4. Typical snapshots of the distribution of strategy in steps 0, 8, and 11 000. All results are obtained for K = 0.1, b = 1.2. From top to bottom, the strength
of external forcing mechanism Pr is equal to 0, 0.3, 0.4, respectively. In this figure, blue represents cooperators, in contrast, red stands for defectors. Cooperators
always tend to form a block structure, however, they cannot defend the invasion of defectors when the external forcing mechanism is missing. Similar to that,
cooperators and defectors finally form a confrontational situation under a certain strength of external forcing (i.e., situation shown in the center of the figure).
As the strength of external forcing raises, the defectors get weaker and weaker and vanish at the end.

temptation to defect T = b under different external forcing
strengths when K = 0.1. The proportion of cooperation ρc

decreases rapidly as T = b increases, where the external forc-
ing mechanism is absented. When we introduce the external
forcing mechanism, we can find that with the increase of
intensity of external forcing mechanism affects the proportion
of cooperation in the same T = b case has been increased. In
short, the introduction of external forcing mechanism could
promote the level of cooperation.

Then, we study the influence of the environment noise
factor K on the cooperation level. When the environment
noise is huge, namely, when K → ∞, agents could not judge

the circumstances precisely for choosing the best strategy
rationally, and they would change their strategy stochastically.
On the contrary, when K → 0, which means the environment
is clear, and agents will update their strategy accurately. The
results of the relationship between the level of cooperation ρc

and K are researched under different intensities of external
force Pr. Results represented in Fig. 2 illustrate the propor-
tion of cooperators ρc with temptation T for different external
force Pr. The results show the change of the cooperation ratio
in the steady state with K when b = 1.5. The external force
strength of 0.1, 0.2, and 0.3 is used in the panels. The coop-
eration proportion increases with the increase in noise level
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FIG. 5. Proportion of cooperators ρc on the square lattice changes with r in
the snowdrift game, as acquired with different intensities and without external
forcing mechanism. Presented results are obtained for K = 0.1.

when players are in a high temptation to defect (i.e., b = 1.5
as shown in the panel). The reason for this phenomenon is that
insufficient external forcing intensity is not enough to inhibit
rational groups from choosing defection strategies, and rais-
ing the noise level can weaken rational thinking and make it
easier to increase the proportion of cooperation. When temp-
tation T = b and external forcing intensity ρc are relatively
small, the agent’s choice of cooperation or defection has little
difference in revenue, the external forcing effect is not enough
to control the overall situation, Addition of the noise makes
the irrational situation appear, and the agent’s strategy choices
are in great randomness. The worst cooperation ratio occurs
when K is about 0.1. The proportion of cooperation is inhib-
ited somehow. This conclusion can guide us to analyze the
actual environment in reality and adopt different measures to
maintain the cooperation ratio to an ideal level under special
circumstances.

Since the introduction of external forcing mechanism
promotes the level of cooperation, it is meaningful to detect
the potential reason for this phenomenon. In order to analyze
the inherent nature of this promotion, we describe the density
of cooperation under the time series by plotting the changes
of proportion in Fig. 3. In the first few steps, the defectors are
in a dominant position to the cooperators. In fact, we know
that choosing defection is actually a strategy of potential incli-
nation for every agent because defectors have a high payoff
value in one game. As time goes, the power of cooperators
will gradually be eroded by defectors and reach the lowest
point at some point. Cooperative strategy will gradually disap-
pear, for it could not withstand the temptation of high interest
as a defector without external forcing mechanism. The level
of cooperation would be maintained at a certain value with
weak external forcing. The temptation of defection cannot
compete with the global control force with intensive external
forcing, and the proportion of cooperation will gradually rise
to a certain level from the beginning.

From the pattern figure (Fig. 4), blue represents coopera-
tors and red represents defectors, we can see that cooperators
form clusters to spread and resist the invasion of defectors

FIG. 6. Proportion of cooperators ρc on the square lattice changes with temp-
tation to defect b in the multigames, as acquired with different intensities
and without external forcing mechanism. Presented results are obtained for
K = 0.1, � = 0.4. As the external forcing strength get stronger, the tempta-
tion lose its influence gradually.

in the process of evolution. On the contrary, defectors do
not have the ability to form clusters. The involvement of
external forces can maintain the agent in the core position
to adopt a cooperative strategy better, as a result, the advan-
tages of partners would be further strengthened. By analogy,
with the introduction of external forcing mechanism in scale-
free network, and they occupy the hub nodes of interaction
network, the cooperators get together fast to decrease the
invasion of the defectors. Thereby, the network will form a
leader-follower model relationship which will promote the
cooperation efficiently.

At last, in order to verify the robustness of the proposed
mechanism, simulations are performed with the snowdrift
game and multigames. The proportion of cooperators ρc in
dependence on r with regard to the snowdrift game is shown
in Fig. 5. We can find the same law of change of proportion
of cooperators as r increased. The external forcing mecha-
nism performs well in the snowdrift game for the proportion
of cooperation has been all one at the control ratio of 0.5,
which would not happen in weak prisoner’s dilemma. Coop-
eration is easier to exist in the snowdrift game, which is
consistent with previous findings. Figure 6 features the pro-
portion of cooperators as a function of temptation to defect
T = b in evolutionary multigames. Similar to above results,
there exists a range of temptation to defect b insuring the
larger proportion of cooperators with setup of external forc-
ing mechanism under different values of �. But, we can also
find that with the same intensity of external forces, the pro-
portion of cooperation of multigames is higher than that of
prisoner’s dilemma for an obvious reason that multigames
introduce heterogeneity.

IV. CONCLUSION

To summarize, we propose an external forcing mecha-
nism to urge agents learning the cooperative strategy, which
can boost the cooperation into a higher level. Specifically,
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we compare the level of cooperation under different intensi-
ties of external forcing with the traditional model, in which
agents have the probability Pr (0 ≤ Pr ≤ 1) to learn cooper-
ative strategy and then have the probability 1 − Pr to learn
the strategy of his neighbor. The numerous simulation results
show that cooperative level can be largely promoted when
the mechanism is introduced in prisoner’s dilemma. Mean-
while, the time course of the proportion of cooperators and the
relationship between cooperative level and uncertainty of the
strategy selection are exhibited as well. The reason for the pro-
motion of cooperative strategy is the introduction of external
forcing mechanism, which motivates the occurrence of com-
pact cooperative clusters. Cooperators could get together and
form clusters quickly so as to resist the invasion of defectors.
In addition, we simulate the mechanism under the snowdrift
game and multigames for researching the effect of external
forcing mechanism deeply. It is clear that the external forcing
mechanism indeed promotes the cooperation level.

According to the results, external forcing mechanism is
an important method to promote the cooperation level. This
mechanism could be extended to other evolutionary games
and may achieve high cooperative level efficiently. Conclu-
sions from our experiments are of great practical significance,
and it may help us to find the optimal mechanism for main-
taining the level of group cooperation under specific circum-
stances. In addition, there are also broad research directions
such as analysis and control of cooperative strategy in terms
of different network topologies.
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